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1 

 
THE DEVELOPMENT OF ADVANCED SENSOR TECHNOLOGIES TO 

MEASURE CRITICAL NAVY MOBILITY FUEL PROPERTIES 
 

 

1.0  SUMMARY 
 
Current mobility fuel acceptance is performed in the shipboard fuel laboratory with a series 

of traditional fuel measurements.  A fully automated, sensor-based analytical capability would 
offer significant savings in manpower and consumables, as well as provide for a safer, more 
rapid, and possibly more accurate analysis.  Laboratory studies have thus been undertaken at the  
Naval Research Laboratory to develop chemometric methodologies and to assess measurement 
technologies that will enable the implementation of sensor-based instrumentation capable of 
measuring critical Navy mobility fuel properties.   

 
One-dimensional and multi-way chemometric methods were developed to characterize trace 

level compositional changes occurring in fuels during aging or thermal degradation from gas 
chromatography (GC) and combined gas chromatography-mass spectrometry (GC-MS) analyses.  
Multi-way analysis of GC-MS data was also shown to be an extremely sensitive and effective 
method for elucidating the composition of trace fuel contaminants.  These chemometric 
techniques were then used to evaluate several chromatographic and spectroscopic methods for 
their efficacy in modeling critical fuel properties.   

 
The preliminary findings from a small training set consisting of 46 jet fuels from around the 

world, demonstrated the feasibility of performing quality assurance testing of shipboard fuels 
from either GC, near-IR (NIR) or Raman spectroscopy.  GC offered certain advantages for some 
properties, and a data fusion approach in which both chromatography and spectroscopy are 
combined into one model may provide the means with which to confirm the presence of required 
fuel additives.  In many cases, the errors of prediction from partial least squares (PLS) regressions 
were within the published errors of the standard ASTM test methods currently employed.  
However, in order to attain the necessary robustness of the predictive models, many more 
samples will need to be incorporated into the training set.  Once a sufficient number of training 
set samples have been analyzed, the resulting property models can be incorporated into a stand-
alone software application for evaluation by other Navy fuel laboratories.  These models would 
form the basis for the design of a prototype sensor-based “black box” device to replace the 
current ASTM shipboard fuel quality acceptance test procedures. 
 

2.0  INTRODUCTION 
 

Hydrocarbon fuels are complex mixtures of organic compounds that are manufactured to 
comply with performance specifications based on properties, and not on composition.  Thus while 
it is true that fuels obtained in conformance with a particular specification may be similar in their 
physical properties and performance, their composition may differ in both obvious and subtle 
ways.  These compositional differences are a consequence of many factors which include refining 
and finishing methods, crude sources, handling methods, contamination, and blending with other 
fuels.  Not only does the chemical composition of each fuel differ, but the composition of any 
particular fuel can also change with time.  It is usually the formation of insoluble reaction 
_______________
Manuscript approved December 29, 2005. 
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products or changes in a critical property that bring fuel stability into question.  Very often, the 
chemical processes leading to stability problems are due to the presence or absence of 
constituents at trace concentration levels. 

   
Considering the complexity and variability of fuels, it is not surprising that success has often 

eluded researchers in their efforts to understand and provide practical solutions to operational 
problems attributed to undesirable fuel chemistry.  As a consequence, research in fuel science has 
tended to be inductive in nature.  Unfortunately, the methodologies adopted have all too often 
focused on producing and quantifying insoluble reaction products, since they are the most easily 
quantifiable manifestation of chemical reactivity in fuel.  The majority of laboratory test methods 
to predict the tendency of fuels to undergo deleterious changes during storage or under thermal 
stress are based on the assumption that all the reaction rates in a complex mixture will always 
double in a synchronized fashion for each 10°C increase in temperature.  The Ahrennius law has 
thus been often employed to produce detectable quantities of insoluble products in laboratory 
testing within practical time periods.  While the Arrhenius law is applicable for pure and simple 
systems, reliance on thermal acceleration of deposition from a complex mixture, such as a fuel, 
can often yield irrelevant results.  The multiplicity of sequential and parallel reaction pathways 
that become available as different activation energy requirements are met at different 
temperatures can permit chemical processes to occur that are not necessarily possible under 
conditions of use.  Thus, while the repeatability of many laboratory fuel test devices and 
methodologies can be very good, in many instances the relevance to actual conditions of use is 
very limited, if not absent.  Therefore, it’s not always realistic to attach any mechanistic 
significance to quantities of insoluble products formed in order to define relationships between 
composition and liquid-phase chemistry.   

 
While there are limits placed on certain fuel constituents, a fuel’s quality and suitability for 

use is based on a series of physical and chemical measurements.  These measurements are 
performed in accordance with accepted test procedures contained in the applicable ASTM test 
methods1.  The NATOPS Aircraft Refueling Manual2 requires that aviation fuel (JP-5) received 
by ships for aircraft fueling, be tested for API gravity, flash point, particulates, fuel system icing 
inhibitor (FSII), and free water.  During flight operations, the fuel that is dispensed to aircraft 
must be tested each day for appearance, particulates, free water and FSII.  All of these tests are 
performed in the shipboard QA fuel laboratory, which requires significant manpower and time.  
The necessity of sampling and transporting fuel samples from the source to the fuel lab also 
entails manpower costs and safety considerations.  In addition, the ASTM tests that are employed 
require that the analyst be trained and familiarized with the fuel test methods.   
 

Shipboard and land-based fuel handling operations would both greatly benefit from an 
instrumental method to monitor fuel quality and to perform the necessary quality assurance 
testing.  While realizing significant savings in manpower and cost, this capability would also 
reduce the time necessary to determine fuel quality.  A sensor-based fuel diagnostics capability 
would significantly reduce, if not eliminate the safety and disposal issues associated with 
laboratory consumables now in place.  If this technology could be developed to include in-line 
real time quality monitoring, this would be invaluable in performing fuel quality monitoring 
throughout the fuel handling system.  Such a system could be automated to provide continuous 

                                                 
1 ASTM, Specification of Aviation Turbine Fuels. In Annual Book of ASTM Standards; ASTM: 

Philadelphia, PA, 1997; Vol. 05.01, D1655-96c. 
2 “Aircraft Refueling NATOPS Manual”, NAVAIR Report No. 00-80T-109, 15 Jun 2002. 
 



3 

real-time fuel quality monitoring for both shipboard and land-based fuel handling and distribution 
operations.     

 
A sensor-based fuel quality assessment technology would rely on predictive models based on 

mathematical relationships between fuel composition and stability. The science of chemometrics 
has grown from a need to identify hidden relationships in complex data.  Chemometric modeling 
offers the potential for rapid analysis, simultaneous prediction of multiple properties, and the 
ability to address large data sets automatically.  Moreover, this approach would not necessarily 
entail stressing or other treatments that could change the chemistry.  Recent advances in 
analytical techniques, computer technology and the science of chemometrics have made it 
possible to bring these technologies together to address the task of developing a useful predicative 
model correlating fuel stability with fuel composition.   

 
Since the compositional features that can influence critical fuel properties are typically 

obscured by an abundance of irrelevant information, some of the techniques of chemometrics 
would seem well suited to reveal hidden information in complex data from fuel compositional 
analysis.  Several research groups have successfully employed chemometric methods to 
discriminate between different fuel types from GC analyses.   In 1979, Clark and Jurs3 described 
automated classification algorithms that successfully characterized GC data from crude oil 
samples according to their origin.  Neural networks have also been employed4 to develop 
multivariate pattern recognition models for classifying jet fuel samples by type (e.g., JP-4 vs. JP-
5).  Lavine and coworkers5 noted that mathematical pattern recognition methods offer a better 
approach to GC fuel analysis than visual inspection due to the complex nature of processed fuel 
samples.  They demonstrated that pattern recognition methods could successfully identify 
fingerprint patterns in the GC data that were characteristic of fuel type, even in the presence of 
severe weathering.  In each of these applications, the information needed to discriminate the fuel 
samples consisted of subtle variations in peak intensities distributed across multiple peaks in the 
chromatograms.  In order to improve the selectivity and predictive power of principal component 
analysis of GC data, Johnson and Synovec6 employed analysis of variance (ANOVA) 
calculations to restrict the analysis to only those features in the data that were relevant to the 
classification.  In this manner, they were able to discriminate between JP-5, JP-8 and JP-TS in 
mixtures with as little as 1% variation in volume, using comprehensive two dimensional GC (GC-
GC), and eliminate the impact of geographical variances in the jet fuel samples.    

 
Historically, spectroscopic characterization of fuels has been a mainstay of fuels research for 

over 60 years, and the past 15 years have seen a surge of research focused on the development of 
rigorous calibration models that correlate the compositional information contained within 
spectroscopic data to selected fuel quality parameters.  Spectroscopic methods offer a number of 
advantages, including the relative simplicity of instrumentation, rapid analysis time, and high 
quality of the data from a chemometric perspective. Chemometric multivariate analysis of 
spectroscopic data is desirable due to several reasons.  Chief among them is the so called first 
order advantage, providing the ability to recognize the presence of interferants and calibrate in the 
presence of known interferants, as well as conferring the advantages normally provided by signal 
averaging.  Not to be ignored, however, are the additional potentials of rapid analysis, 
                                                 
3 Clark, H. A.; Jurs, P. C.  Anal. Chem. 1979, 51, 616-623. 
4 Long, J. R.; Mayfield, H. T.; Henley, M. V.; Kromann, P. R.  Anal. Chem., 1991, 63, 1256-

1261.   
5 Lavine, B. K.; Mayfield, H. T.; Kromann, P. R.; Faruque, A. Anal. Chem., 1995, 67, 2846-3852.  
6 Johnson, K. J.; Synovec, R. E.  J. Chemometrics and Intell. Lab. Systems, 2002, 60, 225. 
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simultaneous prediction of multiple properties, and the ability to address large data sets 
automatically. 

 
A wide variety of fuel types, ranging from gasoline to jet and diesel, have been examined 

using both near infrared7,8,9,10 and Fourier transform infrared11 instruments as well as FT-
Raman12,13,14 instruments.  A number of fuel properties have thus been predicted via chemometric 
regression of spectroscopic data, including octane/cetane number15, flash point, freeze point, 
density, viscosity, sulfur content16, oxygenates (such as MTBE and ethanol), aromatic, olefin, and 
saturate content, distillation fractions, and vapor pressure.  Of these, the correlation of octane 
number to NIR spectra has been the most widespread and extensively developed with training 
sets numbering in the thousands, resulting in numerous commercially available octane analyzers.   

 
 
 
 
Critical Properties  
 Flash point 
 Fuel system icing inhibitor concentration   
 Dirt (particulate) content 
 Water content 
 Density 
Desirable Properties  
 Aromatics (di-aromatics and mono-aromatics 
 Additives (Betz, SDA, corrosion inhibitors) 
 Freeze / cloud point 
 Sulfur content 
 Viscosity 
 Lubricity 

 
Table 1.  Fuel properties to be targeted for prediction by fuel quality sensors. 
 
 

                                                 
7 Swarin, S. J.; Drumm, C. A. “Prediction of Gasoline Properties with Near-Infrared 

Spectroscopy and Chemometrics.”  SAE Paper No. 912390, 1991. 
8 Fodor, G. E.; Kohl, K. B. Energy & Fuels, 1993, 7, 598-601. 
9 Westbrook, S. R. “Army Use of Near-Infrared Spectroscopy to Estimate Selected Properties of 

Compression Ignition Fuels.”  SAE Paper No.  930734, 1993.   
10 Macho, S.; Larrechi, M. S.  Trends in Analytical Chemistry, 2002, 21(12), 799-806. 
11 Gomez-Carracedo, M. P.; Andrade, J. M.; Calvino, M.; Fernandez, E.; Prada, D.; Muniategui, 

S.  Fuel, 2003, 82(10),  1211-1218. 
12 Flecher, P. E.; Welch, W. T.; Albin, S.; Cooper, J. B.  Spectrochimica Acta, Part A: Molecular 

and Biomolecular Spectroscopy, 1997, 53A(2),  199-206. 
13 Workman, J. Jr.  Journal of Near Infrared Spectroscopy (review article), 1996, 4(1-4),  69-74. 
14 de Bakker, C. J.; Fredericks, P. M.  Applied Spectroscopy, 1995, 49(12),  1766-71. 
15 Kelly, Jeffrey J.; Barlow, Clyde H.; Jinguji, Thomas M.; Callis, James B.  Anal. Chem., 1989, 

61, 313-320. 
16 Breitkreitz, Marcia C.; Raimundo, Ivo M., Jr.; Rohwedder, Jarbas J. R.; Pasquini, Celio; Dantas 

Filho, Heronides A.; Jose, Gledson E.; Araujo, Mario C. U.  Analyst, 2003, 128(9),  1204-1207. 
 



5 

In order to assure adequate fuel quality, the shipboard fuel laboratory must be capable of 
measuring the fuel properties shown in Table 1.  Moreover, any new technologies put in place to 
accomplish this must be capable of measuring those properties with the same or better precision 
than current methods.  The findings of an extensive survey conducted in FY04, indicated that 
there were no suitable commercially available solutions to measure these properties, with the 
possible exception of an optical light scattering sensor for the simultaneous estimation of water 
and particulates that is being developed by Pressure Systems, Inc. (PSI), and currently under 
evaluation by NAVAIR.  In the first phase of this study, methodologies for chemometric 
modeling of chromatographic data were developed to perform sensitive and compound-specific 
fuel diagnostics via GC and GC-MS of Navy mobility fuels.  In the second phase of this study, 
these methodologies were extended to fuel property modeling with both chromatographic and 
spectroscopic fuel analysis data.  The initial emphasis was placed on determining the suitability 
of these various analytical tools to measure the critical fuel properties in Table 1, for 
implementation in a sensor-based analytical system. 

 

3.0  FUEL DIAGNOSTIC AND PROGNOSTIC MODELING 

3.1  Prediction Of Fuel Failures In A Jet Engine Combustor 
 

An example of the discontinuity that can exist between laboratory testing and actual engine 
use was provided during several incidents where a jet engine combustor underwent catastrophic 
failure when using JP-5 fuel from a particular source.  In this instance, the fuel that caused these 
failures passed all the standard laboratory tests required by the military specification MIL-T-
5624.   In addition, a suite of non-standard tests was also conducted without providing an answer 
to the fuel dependent engine problem.  Chemical analyses did not reveal the presence of abnormal 
or highly reactive constituents that could have been identified as responsible for these failures.  It 
became apparent that the compositional uniqueness of this fuel responsible for the combustor 
failures was too subtle to be revealed by a straightforward analytical search for known 
constituents.   This study was therefore undertaken in order to determine if it would be possible to 
develop a correlation model that could predict the incidence of combustor failure, with reasonable 
accuracy, from a capillary GC analysis performed on the suspect fuel sample.  This would 
provide the means to avoid costly full-scale combustion rig testing to ensure fuel suitability for 
this particular jet engine.   

 

Experimental 
 
The training set (fuel set #1) was comprised of 15 JP-5 fuels that were obtained from various 

sources, and verified to be in accordance with MIL-DTL-5624T.  The origin of most of the 
samples could be traced back to one particular refinery, where the failed fuels were produced.  
Some samples, as shown in Table 2, were obtained from the distribution system and some from 
the refinery after process changes were implemented in an effort to avoid the engine failures.  
Samples #2 and #11 were obtained from a different refinery, and sample #14 was taken from a 
long-term storage facility.  Fuel sample #8 was also obtained from the distribution system, but 
was of uncertain origin.  All the samples in the training set had been tested in a full-scale jet 
engine combustion rig, which is a pass/fail test for combustor coking.  Test samples 1, 3, 12 and 
14 had failed the full-scale combustion test, while all the other samples had passed.  A second 
group of 10 JP-5 fuels (Fuel Set #2), was obtained from a distribution system that contained fuel 
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from refinery #1.  These samples were analyzed and classified with the model developed from the 
training set, (fuel set #1), prior to combustion testing. 

 
Five replicate chromatograms were obtained with an Agilent 5890 capillary gas 

chromatograph, with electronic pressure control, controlled via an HP Chemstation.  Samples 
were manually injected with a split/splitless injector at 250 °C, with a ratio of 60:1.  A 50 m OV-
101 (crosslinked polysiloxane) column with a flame ionization detector was used.  A column 
heating profile was used with an initial oven temperature of 40 °C, with a heating rate of 10 °C 
/min, to 220 °C held for 2 minutes, giving a total run time of 20 minutes.  The GC detector 
current was sampled at a rate of 20 Hz, giving a resolution of 50 ms per point.   

 
A measured quantity of n-eicosine (n-C20) was added to each sample as an internal standard 

to compensate for variations in sample injection and detector response.  The positions of the GC 
peaks in all the samples were aligned to match the retention time of the internal standard in one 
reference chromatogram.  Peak heights were also normalized using the internal standard peak 
from the same reference sample.  Before beginning data analysis, the original chromatographic 
data set of 75 chromatograms and 16384 data points was reduced in size in order to make it more 
manageable by computer.  Every eighth data point in the chromatograms was used to create a 
reduced data set (75 x 2048), which represented a chromatographic sampling frequency of 2.5 
samples per second (compared to 20 samples per second with the original data).  The data were 
reorganized so that replicate chromatograms were ordered consecutively.  
 
  

 
Sample 

No. 

Combuster 
Test 

Pass / Fail 

 
Fuel Source 

1 Fail Refinery #1, from distribution system  
2 Pass Refinery #2 
3 Fail Refinery #1, from distribution system 
4 Pass Refinery #1, process varied, sampled at refinery  
5 Pass Refinery #1, process varied, sampled at refinery 
6 Pass Refinery #1, from distribution system 
7 Pass Refinery #1, from distribution system 
8 Pass Unknown source, from distribution system 
9 Pass Refinery #1, process varied, sampled at refinery 

10 Pass Refinery #1, process varied, sampled at refinery 
11 Pass Refinery #3, sampled at refinery 
12 Fail Refinery #1, sampled at refinery 
13 Pass Refinery #1, from distribution system 
14 Fail Sampled from long-term storage facility 

15 Pass Refinery #1, process varied, sampled at refinery 

 

Table 2. Description of JP-5 fuels used to develop the correlation model (fuel set#1). 
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Results and Discussion 
 

In order to investigate the similarities in the fuel samples, a non-linear map of the data is 
shown in Figure 1.  Non-linear mapping provides a visual means of displaying the 
multidimensional chromatographic data in two dimensions by preserving the inter-chromatogram 
distances.  In interpreting this plot, the distances between the chromatograms is a measure of their 
mathematical similarity (e.g., Euclidean distance).  Thus, two chromatograms located near each 
other in a non-linear map have similar chromatographic profiles.  Ideally, one would like to see 
the replicates of the same samples clustered together and the samples from the two classes of 
fuels ordered into distinct groups.  In this plot, the engine failing samples are 1, 3, 12 and 14; and 
all others are engine passing.  Figure 1 clearly shows that samples 8 and 11 are different from the 
other samples, due to the tight clustering away from the other samples.  The lack of distinct 
clustering between the engine passing and failing classes suggests that the differences between 
the classes are minor.  The small distances between the engine passing samples and failing 
samples 3 and 12 shows that these two samples are more similar to the passing samples than the 
other failing samples 1 and 14.  
 
 

 
Figure 1:  Non-linear map of chromatographic data from 15 different jet fuel samples.  Samples 
1, 3, 12 and 14 caused engine failures.  
 
 

Due to the placement of the samples 8 and 11 in the nonlinear map further outlier analysis 
was warranted.  Principal components analysis (PCA) is a multivariate data reduction method that 
provides both a useful visualization tool and a statistical baseline for outlier analysis.  PCA finds 
combinations of variables, or factors, that describe major trends in the data.  In interpreting this 
plot, the distances between the points is a measure of their similarity.  Thus, two points located 
near each other in a PCA plot would be expected to have similar chromatographic information.  
Ideally, replicates of the same sample would be clustered together and the samples from the two 
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classes of fuels (pass or fail) would be ordered into distinct groups.  Figure 2 is a plot of the 75 
chromatograms projected onto their first two PCs.  Overlaid on the PCA plot is the 99% 
confidence interval for the PC scores.  The five chromatograms that lie outside of this sphere all 
come from sample 11.  
 

Since one of the goals of this project is to develop a single classification model that can 
discriminate good fuels from bad fuels, regardless of the source, subsequent analysis was 
performed using data sets with and without sample #11.  The decision to remove an outlier from 
model development is non-trivial, and it is advisable to include as many samples as possible, 
particularly in this case, where samples were limited.  However, severe outliers such as sample 
#11 can skew the PCA model such that the small differences necessary for distinguishing 
between passing and failing samples would be masked.   Potential causes for outliers might be 
samples taken from different sources, jet fuel types (e.g., JP-8), or major changes in the 
instrumental response.  Upon visual inspection of the chromatogram, it is clear that the GC of fuel 
#11 was distinctly different than the other fuels in the data set.  Fuel #11 was the only fuel 
obtained from refinery #3, and was correctly identified as an outlier in the analysis.  Thus, the 
amount of variation between this fuel and the other fuels was much greater than the differences 
between the fuels from the same source. 

 

 
Figure 2:  Principle component analysis of chromatographic data from 15 jet fuel samples. 

 
 

Discriminant partial-least-squares regression (DPLS) was used to classify the sample 
chromatograms as belonging to either engine passing or failing fuel samples.  DPLS uses a linear 
approach for classification, and the model is of the form 
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where ĉi is the predicted class for sample i, the b terms are the multivariate regression 
coefficients, and the xi terms are the detector responses for the i = 1 to n data points (n = 2048).17  
Two different prediction models were constructed; data set 1 contained the outlier fuel #11, and 
this fuel outlier was removed from data set 2, and two methods of model validation were 
employed.  Since multivariate calibration methods are prone to over fitting the data, they must be 
properly validated.  Ideally, validation of the model would be done with an external prediction set 
consisting of data withheld from the data used to develop the model, i.e., the training set.  
However, in this instance, samples were at a premium and internal validation methods such as 
cross-validation were used. The first validation method, leave-one-out cross-validation, involves 
removing one chromatogram from the data set and predicting its fuel class based on the 
remaining 74 or 69 chromatograms, for data sets 1 and 2, respectively.  This is repeated until each 
of the chromatograms has been removed and predicted once.  The second validation method, 
contiguous blocks cross-validation, involves removing all five of the replicate chromatograms for 
one sample from the data set and using the remaining chromatograms to predict the class of the 
five removed.  This is repeated until each of the samples has been removed from the data set and 
predicted once.  The contiguous blocks cross-validation method is a more rigorous method since 
it predicts the samples versus the other 14 samples.  In comparison, leave-one-out predicts each 
chromatogram against the other 14 samples and 4 replicates of the same sample.  Typically, the 
leave-one-out cross-validation can easily over-estimate the classification ability of the model 
when a large number of replicates and a small number of samples exist.  The optimal number of 
latent variables or PLS factors was chosen to be the minimum predicted residuals sum of squares 
(PRESS) statistic using contiguous blocks cross-validation.  This allows for enough information 
to be retained to explain the model, but not overfit the specific data in the training set.   
 

A third data set was prepared by performing a systematic search of the chromatographic data 
in order to find specific retention time windows that have discrimination power superior to the 
full chromatogram.  This method, known as interval-partial least squares regression (i-PLS), was 
performed on data set 2.  i-PLS determined that the optimum data range for discrimination was 
between data channels 392 and 683, resulting in a 75×292 data matrix.  The location of this 
chromatographic window in relation to the full chromatogram is shown in Figure 3.  The DPLS 
classification results are given in Table 3.  In the Table, methods l-o-o and contiguous represent 
leave-one-out cross-validation and contiguous blocks cross-validation, respectively.  The Table 
shows that all the samples are classified correctly using leave-one-out cross-validation, except for 
two replicate chromatograms for sample 6 being incorrectly classified with data set 3.  However, 
as noted above the contiguous blocks cross-validation is a considerably more robust validation. 

 

The results for data set 1 show that the classification performance is poor with only 62.6% of 
the samples being classified correctly.  The essentially unchanged results for data set 2 shows that 
the removal of outlier sample 11 does not affect the performance of the classification model.  
Significant improvements in classification performance were obtained with data set 3.  These 
improvements suggest that the subtle differences in the chromatographic profiles in this retention 
time window may correlate with a fuels performance in the engine test.  The results for data set 3, 
with contiguous blocks cross-validation are also shown in Figure 4.  This Figure shows the 
predicted class output ĉ for each of the samples, except for sample 11.  In this Figure, a ĉ value of 
greater than zero represents a predicted engine passing fuel and a ĉ of less than zero represents a 
                                                 
17 Thomas, E. V. Anal. Chem., 1992, 66, 795A-804A. 
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predicted engine failing fuel.  Three engine failing sample chromatograms, belonging to fuel 
samples 3 and 12 rise above the line ĉ = 0, and are hence misclassified as engine passing fuels.  
Four engine passing sample chromatograms, from fuel samples 2 and 6, fall below the line ĉ = 0, 
and are misclassified. 
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Figure 3.  Range of data channels picked by interval-PLS. (2.61 to 4.55 minutes) 

 

 

 

Data Set Method Class: Pass 
correct/n (%) 

Class: Fail 
correct/n (%) 

Overall 
% correct 

1 l-o-o 55/55 (100) 20/20 (100) 100 

2 l-o-o 50/50 (100) 20/20 (100) 100 

3 l-o-o 48/50 (96) 20/20 (100) 97.14 

1 contiguous 41/55 (74.5) 6/20 (30) 62.6 

2 contiguous 37/50 (74) 6/20 (30) 61.4 

3 contiguous 46/50 (92) 17/20 (85) 90 

4 DS3 44/50 (88) NA 88 

 

Table 3.  DPLS predictions by the model for the training sample set, using two methods of 
validation.  Data set #1 is all the fuel samples, and data set #2, with the outlier fuel #11, removed. 
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A blind prediction test was performed on a distinctly different group of fuels (data set #4), 
gas chromatographic data from a set of ten blind fuel samples, were analyzed by DPLS to further 
validate the model performance.  Five replicate chromatograms were received for each sample.  
The chromatograms were reduced in size to the same region chosen by the i-PLS model resulting 
in a 50×292 data matrix.  A new DPLS model was built using all 14 samples from data set #3.  As 
shown in Figure 5, the DPLS model classified one replicate from six of the ten fuel samples as 
failing, with the remaining 44 of the 50 samples analyses as passing (88%).  Subsequent 
combustion testing classified all the samples in data set #4 as passing. 
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Figure 4.  DPLS cross-validation results from data set #3, contiguous blocks method 

 

Summary of Results 
 

The results of this preliminary study illustrate how, with proper preprocessing methods, 
fuels can be classified with respect to performance on the basis of subtle differences in fuel 
constituency.  The findings also illustrate the impact that relatively minor variations in GC 
operating conditions can exert on multivariate correlations when the analysis is focused on the 
minor differences between samples.  While it is important to consider all the data, proper 
preprocessing of the raw data is essential in order to focus the analysis on the differences between 
the samples without undue interference from those fuel constituents common to all fuels and to 
minimize instrumental variations so that the method can be packaged and used with any suitable 
instrumentation.  It was also shown that the discriminating power of the model could be improved 
by focusing on those portions of the data that have greater statistical weight, thus reducing the 
amount of extraneous information in the data set.     
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In this study, there were a limited number of failed fuels available, and the levels of 
uncertainty reached in the validation samples reflect this.  These variations would be significantly 
lower if the number of available failed fuels were greater.   However, using the preliminary model 
developed with this data, we were able to correctly screen a group of fuels that passed the 
combustor test, with very little uncertainty.   
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Figure 5.  DPLS prediction results from jet fuel data set #2.  

 
 

 
While chemometrics can be successfully employed to discriminate between different fuel 

types or sources, there are practical limits on use of gas chromatography with fuels that have 
substantially different compositions.  In order to develop useful correlations between composition 
and performance with multivariate analysis of fuels from widely distributed sources and crude 
slates, the methods developed in this study could be focused, through interval analyses, on the 
compounds of interest.  For example, if a particular compound class was identified as being 
significant, the fuel could be preprocessed and a model developed for the subset of all fuel 
constituents represented by that compound class.  However, chemical changes that can lead to 
undesirable fuel property changes are generally due to the presence of chemically active fuel 
constituents, such as heteroatomic species and transition metal chelates.  Thus, while GC with 
flame ionization detection would not necessarily respond directly to metal compounds and 
perhaps some heteroatomic species, their impact on hydrocarbon constituency would be detected 
by this method, if the magnitude of the changes were within detection limits.   
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3.2  Monitoring Diesel Fuel Degradation by GC-MS and Chemometric Analysis  
 

This study was undertaken in order to determine if the application of multi-way chemometric 
techniques to a 3-dimensional dataset, such as GC-MS, would overcome the limitations of GC 
alone in characterizing minute chemical changes in fuels, regardless of source.   

Experimental 
 

Fuel Stressing.  A specification naval distillate fuel (NATO F-76) fuel was used for these 
studies.  In storage stability testing by the LPR method in accordance18 with ASTM D5304, this 
fuel produced 0.7 mg sediment per 100 mL.  Two methods of thermally stressing the fuel were 
used in order to provide fuel samples with varying levels of thermal degradation for analysis by 
GC-MS.  In the first study, 100 mL of fuel was placed in a vented 250 mL borosilicate glass 
bottle and stored in an oven, in the dark at 60 °C.  Aliquots (1 mL) were periodically withdrawn 
without cooling for GC-MS analysis at 0, 7, 14, 24, 31, and 37 days of oven stress.  In a second 
study, fuels were subjected to stress in a closed, low pressure reactor (LPR).  LPR stress was 
performed on aliquots of fuel in accordance with ASTM D5304  (i.e., at a temperature of 100 °C  
and under an atmosphere of 100 psig oxygen) for both the standard duration of 16 hours and also 
an extended duration of 42 hours.  The extended duration LPR conditions were chosen to 
guarantee significant oxidative changes in the fuel.  After the fuel samples were removed from 
the LPR, they were cooled in the dark and 2 mL aliquots were filtered through a 0.2 µm nylon 
Millipore filter for analysis.  A summary of the LPR-stressed samples analyzed by GC-MS is 
presented in Table 4. 

 
GC-MS Analysis.  GC-MS data were obtained using an HP 5890 Series II gas chromatograph 

coupled to an HP 5971 mass selective detector.  Replicate dilutions were prepared and analyzed 
for each fuel sample: three replicates per oven-stressed sample and six replicates per LPR-
stressed sample.  Each replicate was prepared by dissolving 7.5 µL of fuel in 1500 µL 
dichloromethane.  An HP 6890 injector and autosampler delivered 1.0 µL aliquots of each 
replicate sample to the GC in a random order. A split/splitless injector at 250 oC with a split flow 
ratio of 60:1 was used along with a 50 m x 0.2 mm Agilent HP-1 (dimethylpolysiloxane) 
capillary column.  The oven temperature profile was 60 oC to 288 oC at 3 oC/min, giving a run 
time of 76 minutes. A solvent delay of 4.40 minutes was used which reduced the data acquisition 
time to 71.6 minutes per run. 

 
Chemometric Analysis.  Following acquisition, GC-MS chromatograms were preprocessed to 

minimize any undesired variation between chromatograms.  First, all chromatograms were 
normalized to unit area to minimize effects due to variation in injected sample volume. Next, the 
chromatograms were retention time aligned in order to minimize retention time variation between 
chromatograms due to unavoidable fluctuations in instrument parameters (e.g. oven temperature, 
flow rate, etc.) during the course of the experiments.   

                                                 
18 ASTM, “Standard Test Method for Assessing Middle Distillate Fuel Storage Stability by 

Oxygen Overpressure”.  In Annual Book of ASTM Standards; ASTM: Philadelphia, 2003; Vol. 
05.03, ASTM D 5304-03. 
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Sample Number Stress Conditions 

1-6 Unstressed 

7-11 LPR, 16 hour 

12-17 LPR, 42 hour 

18-23 LPR, 42 hour, Cu 

 

Table 4.  Summary of fuel stress conditions imposed on the 23 samples of naval distillate fuel 
(NATO F-76).  
 

 
Retention time alignment for these experiments was accomplished via a two-step procedure.  

First, a total ion current (TIC) chromatogram for each GC-MS chromatogram was constructed by 
taking the sum along the mass spectral axis in the data.  The set of all TIC chromatograms was 
then subjected to a manual peak alignment procedure where corresponding peaks from 
chromatogram to chromatogram were visually identified and tabulated.  Taking the first 
chromatogram as the target for alignment, the required shifts for the remaining chromatograms 
were calculated.  In the second step, these required shifts were applied to the retention time axis 
of the GC-MS chromatograms via interpolation.  

 
Since the data acquired for this work were accumulated over a relatively short time period on 

a single instrument, the instrumental parameters could be more closely controlled than is 
generally possible in daily routine analyses.  Given the relative stability of the GC-MS data 
acquired, it was unnecessary to add internal standards for retention time alignment and 
normalization purposes in this experiment.  In general practice under conditions where carrier gas 
flow rate variations are encountered, it certainly may be necessary to employ internal standards.  
In previous studies19, we have successfully corrected non-linear variations in gas chromatography 
carrier gas flow rates by aligning chromatograms within portions of the data bracketed by the 
major hydrocarbon peaks.  Such a windowed approach to baseline peak alignment is a viable 
approach to minimizing instrumental variations that could be encountered in actual use and when 
the best possible quantitative precision is required. 

 
Datasets for each experiment consisted of a series of two-dimensional GC-MS 

chromatograms, one for each sample analyzed, stacked on each other to form a three-dimensional 
array, or cube of data.  These data sets were probed for chromatographic features that described 
the difference between different fuel blends using the ANOVA based feature selection algorithm 
as described by Johnson20, and implemented by an in-house program written for MATLAB 
(Mathworks Inc., Natick, MA).  Feature selection was performed by grouping a set of data into 
defined classes and looking for data points which best describe the differences between classes, 
while remaining the same within a given class.  This is accomplished by performing the ANOVA 
f-ratio calculations, shown in equations 2 – 5,  for each data point in the two dimensional space of 
the GC-MS data.  In this manner, a complex data set was rapidly and automatically scanned for 
features important for a given classification.  Multivariate models of GC-MS data were then 

                                                 
19 Morris, R. E.; Hammond, M. H.; Shaffer, R. E.; Gardner, W. P.; Rose-Pehrsson, S. L. Energy 

& Fuels, 2004, 18, 485. 
20 Johnson, K. J.; Synovec, R. E.  Chemom. Intell. Lab. Sys. 2002, 60, 225-237. 
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constructed to describe compositional differences between fuel samples.  Modeling was 
accomplished via the PLS toolbox and the Nway toolbox21 (version 2.1).  Three separate 
techniques were used to model changes in fuel composition, multi-way principal components 
analysis (MPCA), parallel factor analysis (PARAFAC), and multilinear partial least squares 
regression (N-PLS)22,23,24,25.   

 
MPCA amounts to unfolding each two dimensional chromatogram into a vector of data and 

subjecting the resulting set of vectors to standard PCA26.  PCA functions by constructing a basis 
set of orthogonal vectors that most efficiently describe the variation present in the data set, known 
as loadings, and the projections of each sample onto a particular loadings vector are known as 
scores.  Prior to application of MPCA, the GC-MS data in this work was subjected to an eight-
point boxcar average along the chromatographic dimension of the data to reduce the size of the 
data set due to memory limitations of the personal computer on which the analysis was 
performed. 

 
PARAFAC is conceptually similar to PCA, except that it functions on three-dimensional 

arrays.  Thus, each independent factor in a PARAFAC model consists of three loadings vectors, 
one for each dimension of the original data set (i.e., retention time, ion abundance and mass 
spectra).  The loadings vectors generated by PARAFAC are calculated in an iterative fashion to 
best describe the overall variation in the data set, given a specified number of factors as well as 
any constraints that may be imposed on any of the modes, such as non-negativity or unimodalitiy.   

 
The advantage of PARAFAC lies in the incorporation of a third dimension, which provides 
unique solutions to the factor decomposition problem.  Thus, if the underlying factors fit the 
PARAFAC model, concentration and spectral features can be extracted directly. According to the 
strength and weaknesses of each technique, bulk changes in fuel composition (i.e. changes 
reflected in the overall chromatogram) were modeled with MPCA due to their deviation from 
trilinearity, while PARAFAC was used to model smaller local regions of GC-MS data in order to 
extract concentration profiles and mass spectra of pure fuel components. 
 

N-PLS27,28,29,30 is a multi-way generalization of the commonly used partial least squares 
regression algorithm designed to be used with second or higher order data sets.  In accordance 
with the philosophy behind first-order PLS regression, the algorithm seeks to decompose the data 
into a factor model that best describes the covariance between the dependant (predicative) and 
independent (predicted) variables.  This model is then applied to subsequently measured data to 
make quantitative predictions.  The chief difference between PLS and N-PLS is that, in N-PLS, 
the factor model is trilinear in form (as with PARAFAC).  N-PLS has previously been shown31,32 

                                                 
21 Andersson, C. A.; Bro, R. Chemom. Intell. Lab. Syst. 2000, 52, 1-4. 
22 Smilde, A. K.  Chemom. Intell. Lab. Sys. 1992, 15, 143-157. 
23 Henrion, R. Chemom. Intell. Lab. Sys. 1994, 25, 1-23. 
24 Dahl, K. S.; Piovoso, M. J.;  Kosanovich, K. A. Chemom. Intell. Lab. Sys. 1999, 46, 161-180. 
25 Bro, R.  Chemom. Intell. Lab. Sys. 1997, 38, 149-171. 
26 Malinowski, E. R. "Factor Analysis in Chemistry" 2nd ed., John Wiley & Sons, New York, 

1991. 
27 Bro, R.  J. Chemom.  1996, 10(1) 47-61. 
28 Smilde, A. K.  J. Chemom.  1997, 11(5), 367-377.  
29 de Jong, S.  J. Chemom.  1998, 12, 77-81. 
30 Bro, R.; Smilde, A. K.; de Jong, S. Chemom. Intell. Lab. Syst. 2001, 58(1), 3-13. 
31 Johnson, K.J.; Prazen, B.J.; Young, D.C.; Synovec, R.E.  J. Sep. Sci.  2004, 27, 410-416. 
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to be effective in the quantification of multi-component compositional properties of both 
industrial naphtha and fuel samples by GC-GC.  
 
 

 

 
 
 

Results and Discussion 
 

There are two basic premises for applying chemometric methods to instrumental data.  The 
first is that the dataset constitutes an accurate numerical representation of the relevant chemical 
information, and the second is that the differences between the different classes of samples are 
statistically greater than the differences between samples within the same class.  If these two 
criteria are met, then it should be possible to develop predictive and diagnostic models based on 
these numerical representations of fuel composition.  Moreover, a mathematical discrimination of 
all the significant differences in fuel composition after stress could reveal subtle features highly 
correlated with fuel quality that could have gone otherwise undetected.   

                                                                                                                                                 
32 Prazen, B.J.; Johnson, K.J.;  Synovec, R.E. Anal. Chem. 2001, 73(23), 5677-5682,. 
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The data resulting from a single GC-MS analysis of a typical unstressed diesel fuel can be 

depicted in a two-dimensional plot as shown in Figure 6, which is a topographical contour plot 
with a single contour line drawn at a value of signal intensity of three times the baseline noise.  In 
this Figure, the x-axis is retention time in terms of mass spectral scan number and the y-axis is the 
mass spectral axis and encompasses mass to charge (m/z) ratios of 50 to 300.  Thus, each slice of 
this plot taken along the x-axis represents the mass spectrum recorded at a given retention time in 
the GC separation.  A data set resulting from multiple GC-MS analyses can thus be 
conceptualized as a series of two-dimensional GC-MS chromatograms stacked one on top of 
another to form a cube.  Therefore, in addition to dimensions describing GC retention time and 
MS mass to charge ratios, such a data set also has a third dimension reflecting the identity of the 
different samples subjected to GC-MS analysis. 

 
An initial examination of the GC-MS data indicated that the chromatographic retention time 

precision and signal reproducibility were relatively high.  For example, the data collected in the 
study of LPR-stressed fuels exhibited a mean standard deviation in peak position of 2.7 scan 
numbers across 286 peaks in the 18 chromatograms.  This deviation is equal to only roughly one 
fourth of the typical peak width and, thus, manual alignment of the chromatographic profiles was 
readily achieved.  Turning to signal reproducibility, an examination of replicate total ion current 
chromatograms yielded a mean RSD of 9.6 percent across the entire chromatographic run for the 
raw data, and a mean RSD of 3.3 percent for data that had been area normalized and aligned. 

 
An MPCA model was constructed from data acquired in the analysis of the oven stressed neat 

fuel samples.  The scores on the first principal component of the MPCA model are shown in 
Figure 7.  This plot indicates that there is a clearly defined progressive change in composition as 
the fuel was subjected to increasing durations of oven stress at 60°C.  

 
The loadings vector (reshaped to matrix form) associated with the first principal component 

of the MPCA model and represents the portions of the GC-MS data that were undergoing changes 
during oven stress.  The loadings plot thus derived, indicated that much of this change was 
associated with a decrease in the concentrations of early eluting (i.e. high volatility) components, 
which is consistent with evaporative loss during stress, rather than chemical changes associated 
with fuel degradation.  Models constructed from fuels spiked with copper demonstrated similar 
behavior. 

 
The extent of the compositional changes associated with evaporative loss was further 

examined with the ANOVA based feature selection utility.20  The f-ratios from this analysis are 
shown in Figure 8 as a contour plot drawn with a single contour line at an f-ratio value just above 
baseline noise.  The variations from sample to sample shown for this data set in Figure 7 are thus 
dominated by decreasing concentrations of early eluting components.  This finding indicates that 
the process of evaporative loss, rather than fuel degradation is being modeled.  To further 
illustrate this point, a feature-selected total ion current (TIC) chromatogram was constructed by 
including only data points with an ANOVA f-ratio greater than 80, as shown in Figure 9.  This 
feature-selected TIC thus represents only those fuel components that had changed during the oven 
test.  When compared with the TIC of the unstressed fuel, two things are evident:  1) the ANOVA 
f-ratio test is able to detect subtle changes in composition from GC-MS data and 2) the lighter 
components were being lost during oven testing. 
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Figure 6.  Typical GC-MS chromatogram of an unstressed diesel fuel, presented as a 
topographical contour plot with only one contour line, drawn at a signal intensity of three times 
the baseline noise.   
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Figure 7.  MPCA model of oven-stressed fuel, showing a clear progression in the scores on the 
first principal component as the duration of oven stress at 60°C is increased.    
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Figure 8.  ANOVA f-ratios for oven-stressed fuel, which provide a measure of how well each 
data point describes the differences as oven stress increased.   

 
 

In order to minimize evaporative losses, a second study was conducted in which neat and 
copper-doped fuel samples were thermally stressed in a low pressure reactor (LPR) at 100 
degrees Celsius under 100 psi. oxygen for 42 hours.  Figure 10 depicts ANOVA f-ratios for the 
LPR-stressed fuel data set.  The f-ratio calculation was made by defining the classes of samples 
as unstressed, 16 hour LPR stressed neat, 42 hour stressed neat, and 42 hour LPR stressed with 
Cu, thus providing a measure of how well each data point in the GC-MS chromatograms 
describes the difference between LPR stressed and unstressed fuels.  As can be seen in Figure 10, 
evaporative loss does not dominate the changes associated with LPR stress of this fuel, as they do 
in the first oven stress study. 

 
An MPCA analysis of the LPR-stressed fuel data set was conducted and the scores on the 

first principal component are shown in Figure 11.  The first six samples are replicates of 
unstressed fuel, the next five were 16 hour LPR-stressed fuel, the next six 42 hour LPR-stressed 
fuel, and the final six 42 hour LPR-stressed fuel with added copper.  From this plot, there is a 
clear differentiation between stressed and unstressed fuels (i.e. intra-replicate variation is much 
less than inter-replicate variation), but essentially no difference between the comparison of 
stressed fuels with and without copper.  The loadings from this first principal component of the 
MPCA model agree very closely with the features defined by the ANOVA f-ratio calculation, and 
this indicates that the MPCA model is describing the difference between stressed and unstressed 
fuels without the need for feature selection prior to MPCA.  A second ANOVA f-ratio calculation 



20 

500 1500 2500 3500 4500

0

0

1 

2

Retention Time (scan number)

Total Ion
Current

Feature-Selected
TIC

500 1500 2500 3500 4500

0

0

1 

2

500 1500 2500 3500 4500

0

0

1 

2

Retention Time (scan number)

Total Ion
Current

Feature-Selected
TIC

 
Figure 9.  TIC of unstressed fuel and the feature-selected TIC of the components that have been 
altered during oven stress.  
 

 
was performed, this time using only the 42 hour LPR-stressed fuels and defining two classes: 
fuels stressed with copper and fuels stressed neat.  This analysis failed to locate any 
chromatographic features capable of making this classification.  This suggests that, even though 
copper can accelerate the rate of fuel autoxidation, in this instance, the presence of copper had 
little or no significant impact on the final composition of the LPR-stressed fuel. 
 

The feature-selected TIC displayed in Figure 12 was computed using the ANOVA f-ratios 
shown in Figure 10 to filter the chromatogram of an unstressed fuel so that only the 
chromatographic features that differ significantly between the LPR-stressed and unstressed fuels 
are seen.  The raw (i.e. non-feature selected) TIC of the unstressed fuel is also shown, for 
comparison.  In this instance, the feature selected TIC was calculated by including only data 
points with an ANOVA f-ratio greater than 100.  This threshold value was chosen empirically, 
based on a visual inspection of all of the calculated ANOVA f-ratios, which demonstrated that 
ANOVA f-ratios in the baseline areas of the chromatogram were all less than 100.  A more 
rigorous optimization of this threshold was not undertaken as the threshold obtained by visual 
inspection performed adequately for the purposes of this study.  Figure 12B shows an enlarged 
region of Figure 12A and demonstrates the degree to which fuel components which changed 
during LPR stress were intermingled with those that did not in the GC-MS chromatogram. 

 
An attempt was made at spectral deconvolution of an ANOVA–selected feature from GC-MS 

data of LPR-stressed fuel.  The boxed region in Figure 12B was subjected to PARAFAC 
decomposition with unimodality and nonnegativity constraints on the GC mode, and 
nonnegativity constraint on the mass spectral mode.  A five-component PARAFAC model was 
then constructed and the chromatographic and sample mode loadings are shown in Figure 13.  As 
seen in Figure 13A, four discrete Gaussian peaks, as well as a fifth peak that was somewhat less 
well-defined, were extracted from the region shown in Figure 12B.  One of this set of four peaks  
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Figure 10.  ANOVA f-ratios for changes in composition of LPR-stressed fuels.  In this case, 
evaporative losses do not dominate the changes associated with LPR stress, as they do with oven 
stress. 
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Figure 11.  MPCA scores on the first principal component of LPR-stressed fuel showing a clear 
delineation between stressed and unstressed fuels. 
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occurs at the same retention time as the desired feature located by the ANOVA feature selection 
algorithm and is drawn with a solid line in Figure 13B. 

 
Figure 13B shows the concentration profiles of these extracted components by sample 

number.  The first six samples are replicates of unstressed fuel, the next five were 16 hour LPR-
stressed fuel, the next six 42 hour LPR-stressed fuel, and the final six 42 hour LPR-stressed fuel 
with added copper.  It can be seen that one extracted component in this region is decreasing in 
concentration with LPR stress while the others remain essentially the same.  This component, 
depicted again with a solid line, corresponds with the chromatographic feature located by 
ANOVA feature selection.   

 
The loadings in the mass spectral mode for this component of the PARAFAC model are 

shown in Figure 14, with major peaks at m/z = 91, 115, 117, 131, 145, and 160.  This extracted 
mass spectral data was writing the data to an appropriately formatted text file, which was then 
passed to the NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectral Library 
(version 2.0) which then returned automated library search results for the submitted data.  A 
molecular structure assignment (5-ethyl-1,2,3,4-tetrahydronapthalene) was obtained via the NIST 
mass spectral library for the PARAFAC model component in question. This illustrates the 
potential diagnostic capability of this approach to detect and characterize those trace fuel 
constituents that have changed during use or thermal stress. 

 

Summary of Results 
 

When employing multidimensional chemometric techniques to perform discriminant analyses  
of complex fuel composition datasets, it is imperative that measures be taken to avoid 
unintentional weighting of results.  Thus, we have to be very circumspect in how we define what 
constitutes a statistically significant change in composition, while avoiding interpretations that 
may be skewed by preconceived ideas of which chemical processes are relevant.  Another aspect 
of this methodology that is critical is the establishment of the ability of the numerical data to 
accurately represent the magnitude of change, i.e., the linearity of instrumental response to 
compositional change.   
 

The ANOVA analysis has been shown to be capable of extracting the significant information 
from complex compositional data.  It was clearly shown in analysis of the oven-stressed diesel 
fuel samples that the chemical variations were dominated by evaporative loss of the more volatile 
fuel components, rather than those that are lost or gained due to fuel degradation.  Utilization of 
LPR stress conditions minimized this effect, and allowed for a better examination of changes in 
fuel composition due to degradation. 

 
Fuel degradation in samples subjected to LPR stress under the conditions described was 

readily observed and modeled as changes in fuel composition as monitored by GC-MS analysis of 
fuel samples.  The ANOVA based feature selection was able to locate the features that changed 
from sample to sample, thus allowing for a quick evaluation of how fuel composition was altered 
during stress, as well as aiding in constructing hypotheses as to the mechanisms of this change.   
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Figure 12.  A)  Feature-selected TIC of unstressed fuel from the LPR stress study including only 
data points with an ANOVA f-ratio greater than 100.  Offset from the feature selected TIC is the 
raw (i.e. non-feature selected) TIC of the same fuel sample.  B) Enlarged region of feature 
selected TIC. 



24 

Lo
ad

in
g 

on
 M

od
e 

2

Retention Time (scan number)

A

2480 2485 2490 2495 2500 2505 2510
0

0.5

1

1.5

2
x 10 -4

A

Lo
ad

in
g 

on
 M

od
e 

2

Retention Time (scan number)

A

2480 2485 2490 2495 2500 2505 2510
0

0.5

1

1.5

2
x 10 -4

A

 
 

Sample Number

Lo
ad

in
g 

on
 M

od
e 

1

B

5 10 15 20
0.5

1

1.5

2 x 10-4

Sample Number

Lo
ad

in
g 

on
 M

od
e 

1

B

5 10 15 20
0.5

1

1.5

2 x 10-4

 
 
 
Figure 13. PARAFAC decomposition of the boxed region in Figure 12B. Unimodality and 
nonnegativity constraints were imposed on the chromatographic mode, and a nonnegativity 
constraint was imposed on the mass spectral mode.  A) Resulting deconvoluted GC profiles 
showing four discrete Gaussian peaks.  B)  Deconvoluted concentration profiles, with only one 
component decreasing in composition with stress.  
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Figure 14.  Mass spectral loadings of the PARAFAC model component that decreased in 
concentration during LPR stress.  A tentative identification of this compound as 5-ethyl-1,2,3,4-
tetrahydronapthalene was made via a NIST mass spectral library match. 
 
 

In this experiment, it appears that this diesel fuel stressed with and without high levels of 
copper approached the same chemical composition “end point” although the mechanism and rate 
of change may have been different.  This raises questions about the role of copper in fuel 
autoxidation, and it serves as an autoxidation accelerant without imposing significant changes in 
the autoxidation mechanism.  Such a finding would imply that copper could be used to accelerate 
fuel stability testing in the laboratory.   
 

Identification of a number of individual fuel constituents that change significantly during 
LPR stress may be possible through PARAFAC decomposition of local regions of GC-MS data 
that have been identified as significant by ANOVA-based feature selection. The potential of this 
approach is as a diagnostic tool, as well as a means of more completely understanding the 
complex processes that occur as a fuel degrades.  This type of analysis could eventually provide 
the means to characterize compositional changes in fuels associated with degradation to an 
unprecedented level of detail.  This level of detail and understanding of the fuel degradation 
process is necessary to develop reliable and robust models to predict fuel quality that are 
functional for more than one type of fuel.  Moreover, by incorporating structure assignment 
functionality along with localized PARAFAC modeling and appropriate data preprocessing, it 
would theoretically be possible to provide a means of automating the process of analyzing the 
GC-MS datafiles to provide rapid compositional profiles for evaluating fuel samples. 
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3.3  Characterization of Fuel Blends by GC-MS and Chemometric Tools 
 

This study was undertaken to test our hypothesis that second order chemometric tools have an 
even greater potential to characterize and quantify fuel components in complex mixtures.  
Demonstrated here is an application that illustrates the potential of three multi-way chemometric 
analysis tools to rapidly and effectively characterize the composition of different fuel blends. 

Experimental 
 

Fuel Blends.  In the first experiment, a series of diesel fuel and light cycle oil (LCO) blends 
were examined.  The blends were comprised of 0, 1, 5, 10, 20 and 100 percent LCO by volume, 
with the remainder being made up by a navy specification F-76 diesel fuel (DFM).  In a second 
experiment, a series of samples consisting of one neat DFM sample, one DFM adulterated with 
home heating oil (HHO), and a blend of equal volumes of the two were examined. 

 
GC-MS Analysis.  Samples for GC-MS analysis were prepared by diluting 2 µL of each 

sample with 2 mL dichloromethane.  An HP 6890 injector and autosampler delivered 1.0 µL 
aliquots of each of five replicate samples in random order to an Agilent model 5890 capillary gas 
chromatograph coupled to a HP 5971 mass selective detector.  A split/splitless injector at 250oC 
with a split flow ratio of 60:1 was used along with a 50 m x 0.2 mm Agilent HP-1 
(dimethylpolysiloxane) capillary column.  The oven temperature profile was 50oC for one minute, 
to 290oC at 10oC/min, holding for seven minutes, giving a run time of 32 minutes. A solvent 
delay of four minutes was used which reduced the data acquisition time to 28 minutes per run.  
The GC-MS data that were acquired from these runs was converted from the native HP 
Chemstation datafiles to raw text format utilizing an in-house written MS Windows program and 
then imported into MATLAB for subsequent chemometric analyses. 

Results and Discussion 
 

Identification of LCO components in LCO/DFM blends.  The task of detecting different fuel 
types in a fuel blend by gas chromatography can be limited by the overall differences in GC 
features from the different component fuels.  As the overall differences between the compositions 
of the component fuels in a mixture become smaller, it becomes more difficult to discriminate the 
components of a blend.  Thus, the greatest limitations in this approach are generally encountered 
in situations where a fuel may be contaminated by a small amount of a slightly different fuel.  
Chemometric analysis of GC data from mixtures can be successfully used to discriminate 
between different fuel types, but is subject to limitations imposed by the depth of information 
provided by the technique.   

 
By extending this approach to a second order technique, each fuel component is more 

completely defined and the GC-MS can thus provide a more unique numerical representation of 
the fuels that comprise the sample.  A significant challenge that must be overcome in the 
treatment of second order data, is the discrimination of statistically significant data within the 
complex dataset.  By employing the ANOVA feature selection at each point as described above, 
regions of the GC-MS data can be defined that are adept at describing the chemical differences 
between different fuel blends.   When the GC-MS of a neat DFM sample was compared to a 
blend of the same fuel adulterated with 20% by volume of an LCO, the ANOVA feature selection 
successfully extracted the total ion chromatogram (TIC) of the LCO, from the larger quantities of 
DFM components, as shown in Figure 15.   
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The individual compounds in the LCO contaminant can be also identified by computing a 
series of successive PARAFAC models on windowed regions of the retention time axis of the 
GC-MS dataset.  PARAFAC models were thus constructed on successive 30 scan windows along 
the retention time axis, stepping the window in 20 scans increments, at each iteration.  A five 
factor model was then calculated for each local region and LCO components were identified by 
locating factors in the PARAFAC model where the sample mode loadings varied significantly 
between the neat and adulterated DFM samples.  The sample mode loadings are shown in Figure 
16A, which depicts the total ion chromatograms from a series of four neat DFM samples and four 
DFM/LCO samples.  The loading shown with the dashed line shows the most change and 
represents the LCO.  The retention time axis loadings, in Figure 16B depicts the same three 
components, with the dashed line showing how the ion chromatogram of just the LCO was 
discriminated from the other blend components.   

 
Comparison of this extracted ion chromatogram for the LCO with the TIC, illustrates how 

this approach can successfully extract the chromatographic data for a single component from a 
complex mixture.  Accordingly, as shown in Figure 16C, the spectral loadings will yield the mass 
spectrum of the chemical species that produced the extracted LCO ion chromatogram peak.   
Submitting the spectral mode loadings of those factors to a NIST mass spectral library matching 
algorithm provides a list of compound matches.  A partial list of components identified in this 
manner is shown on Figure 17, which shows a portion of the TIC and the LCO components.  
Ultimately, we would export these procedures to a stand-alone computer application that could 
start with raw GC-MS datafiles and provide the analyst a list of chemical compounds that are 
different between the two fuels or blends that are being compared.  If a sufficient training set of 
fuel types were developed, it would also be possible to adopt this process to provide a means of 
performing automated assays of contaminated fuel samples from GC-MS data.   
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Figure 15.  Total ion current chromatogram of a DFM fuel sample blended 20% by volume with 
LCO (gray) overlaid with feature-selected total ion current chromatogram (black). 
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Quantitative determinations of blending components.  Since the model loadings can isolate 
the individual components in a fuel blend, this approach can also be used to derive quantitative 
information about the detected components.   The overall LCO contents of the LCO / DFM 
blends were successfully modeled by a NPLS regression calibration.  As was stated earlier, NPLS 
differs from standard PLS regression in that the data are not unfolded into a 2-dimensoinal 
matrix, but are treated as a 3-dimensional data cube and decomposed into a PARAFAC-like 
trilinear model.  By retaining all the spatial information, much like PARAFAC, a significant 
improvement is obtained in the predictive power of the model.  GC-MS data sets were first 
boxcar averaged by eight points along the retention time axis, to reduce data size and increase the 
speed of calculations.  The predictive power of the resultant model was cross-validated by 
predicting the concentration of each blend with a calibration model constructed from a dataset 
consisting of the five GC-MS replicate analyses of each of the remaining samples.   The results of 
these predictions are shown graphically in Figure 18, as the predicted vs actual volume percent of 
LCO.  The overall variance of prediction represented by this graph is 14.4, although this number 
drops to 0.5 if the samples at either end of the LCO concentration range are excluded.  This is not 
particularly surprising, as the calibration models used to predict both of these concentrations are 
extrapolated.  In this manner, a quantitative determination of the amount of LCO in the DFM 
samples was obtained from the GC-MS analysis.      
 

Qualitative recognition of fuels in a blend.  An obvious application for GC-MS modeling of 
fuel mixtures would be the qualitative determination of the components that are present.  A multi-
way principal component analysis (MPCA) model was constructed using GC-MS chromatograms 
from replicate analyses of three different fuel samples, a neat DFM, a separate DFM sample 
known to be adulterated with an unknown quantity of home heating oil (HHO), and a mixture of 
equal volumes of the two.  Scores from this model are shown in Figure 19, and indicate a clear 
delineation between the samples.  An examination of the loadings on component 1 indicates the 
presence of HHO components from the positive loading, and those more characteristic of the 
DFM fuel were successfully modeled by the negative loading.  The multi-way-PCA plots of the 
entire GC-MS datasets from these DFM and adulterated samples are depicted in Figure 20, from 
the loadings on the first principal component.  By depicting these loadings as projections on the 
scan number vs m/z axes, it is evident that the GC-MS data for the DFM / HHO blends were 
successfully isolated, as positive loadings in Figure 20A, and the DFM itself in Figure 20B from 
the negative loadings of the model.  This illustrates the degree to which the MPCA models can 
distinguish between these two very similar fuels, on the basis of their entire composition, rather 
than just relying on selected targeted constituents to infer the presence of the two fuel types.   
 

Summary of Results 
 

Significant advantages in sensitivity and selectivity can be realized when analyzing mixtures 
of fuels, by using multidimensional data.  The ANOVA feature selection algorithm is the key to 
the utilization of complex datasets, such as the chromatographically resolved data obtained from a 
GC-MS analysis.  A significant advantage of using GC-MS data over first-order spectrographic 
single-channel gas chromatographic measurements is the increased level of detail provided by the 
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Figure 16.   PARAFAC analysis of a local region of GC-MS data to deconvolve chemical 
components. (A) Sample mode loadings  (B)  Retention time axis mode loadings, with overlay of 
TIC in bold and (C)  deconvolved mass spectrum of PARAFAC model component that changes 
between samples. 
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Figure 17.  LCO components identified in feature-selected TIC via NIST library matching of 
PARAFAC-deconvolved spectra. 
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Figure 18.  NPLS calibration of LCO content in DFM/LCO blends.  Variance of prediction was 
14.39, but reduced to 0.50 if results from prediction of concentration extremes (neat LCO and 
DFM samples) are omitted. 
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Figure 19.   Scores on the first principal component from an MPCA model, showing the 
discrimination of three blends of Naval Distillate (DFM) with home heating oil (HHO). 
 
 
analytical data.  Discrimination of fuel types in mixtures is a common need in remediation of fuel 
spills and the examination of fuel contamination issues.  Available methods for performing these 
types of discrimination analyses generally rely on either spectroscopic or chromatographic 
analyses.  However, these methods are limited when the compositions of the components of a 
mixture overlap or are very similar.  In this study, we show that many of these limitations can be 
overcome by including the additional dimension of compositional information provided by GC- 
MS.  The novel multidimensional chemometric techniques described above were successfully 
used to analyze GC-MS data and unravel multi-component properties of fuel blends into its 
component parts.   The sensitivity and accuracy of this approach is illustrated by successful 
quantitative and qualitative discrimination of the components of diesel fuel (NATO F-76) 
samples contaminated with light cycle oil and with another similar diesel fuel.   

 
This approach offers the means to more effectively characterize fuel blends and 

contaminants, by comparison with the known fuel.  If the known fuel components are not 
available, an estimated discrimination can still be made by comparison with typical specification 
fuels.  This could potentially provide the capability to detect and characterize unknown fuel 
adulterants, by comparison with known samples of the unadulterated base fuel. 

 
The predictive power of chemometric modeling of GC-MS data is, of course, limited to those 

fuel constituents that can be chromatographically separated and detected.  However, the 
multidimensional chemometric modeling techniques described in this work would not be limited 
to GC-MS and could form the basis for the development of optically based sensing systems to 
monitor fuel cleanliness and contamination.    
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Figure 20.  MPCA model of DFM/HHO blends.  The two components in the mixture are clearly 
shown from the loadings on the first principal component.  (A) positive loadings represent the 
home heating oil and , (B) negative loadings which represent the diesel fuel. 
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4.0  EVALUATING THE PREDICATIVE POWERS OF SPECTROSCOPY AND 
CHROMATOGRAPHY FOR FUEL QUALITY ASSESSMENT 
 

Currently, fuel quality in the field or onboard ship is assessed with a series of traditional 
ASTM fuel test procedures.  A sensor-based device to perform these tests would not only provide 
significant savings in cost and manpower, but reduce the hazards associated with handling large 
volumes of fuel samples.  It would also provide faster, and in many cases, more consistent results.  
This phase of the program was thus focused on developing sensing technologies to perform fuel 
quality assessment and diagnostics.  This technology is based upon the prediction of critical fuel 
properties from an array of optical and other specialized sensors.  These predictions will take 
advantage of predictive models derived from chemometric analysis of the data stream.   

 
The predictive power of chemometric regression models based on chromatographic data are 

compared with those generated from NIR and Raman spectroscopic data to evaluate the potential 
of these analytical techniques for the development of an advanced fuel quality sensor system.  A 
training set of fuel samples from around the world was acquired, with complete compositional 
and specification test results.  These samples were analyzed by NIR, Raman and GC-MS.  These 
data were evaluated for their ability to predict various fuel properties via PLS as part of an effort 
directed towards developing robust, sensor-based fuel quality assessment methodologies.   

 

Experimental 
 

Fuel sample set.  A set of 45 jet fuels that were sampled from around the world, were used in 
this initial survey.  The set consisted of Jet A (11 samples), Jet A-1 (22 samples), JP-8 (9 
samples), JP-5 (2 samples) and a petroleum (Stoddard) solvent (1 sample).  The samples were 
supplied with measured values for 28 fuel specification properties, and all fuel samples met the 
appropriate specifications.  The range of property values reported for this fuel set are given in 
Table 5. 

 
NIR Spectroscopy.  Near-infrared spectra were obtained with a Cary model 5E 

spectrophotometer.  Supracell cells with path lengths of 10 and 1 mm were used.  Initial spectra 
were obtained from 300 to 2300 nm, with a resolution of 1 nm.  For chemometric analysis, the 
spectral region from 1000 to 2300 nm was used.  Repeatability of spectra was excellent, with the 
exception of some baseline variations observed when the 1 mm sample cell was used, presumably 
due to slight differences in positioning the cell in the beam.  These baseline variations with the 1 
mm cell data were corrected using the multiplicative scatter correction function in the  PLS 
Toolbox for MATLAB prior to multivariate analysis.  Preliminary comparisons between the 1 
mm and 10 mm data indicated no significant advantage to the 1 mm cell, and so its use was 
discontinued.  Data were collected with the Cary software provided with the instrument, and 
exported in comma separated value (CSV) format.  The resultant numerical representations of the 
spectra were combined in one array.   

 
Raman Spectroscopy.  Raman spectra for a 30 fuel subset of the total sample set were 

provided by Real-Time Analyzers, Inc. (Middletown, CT), and were acquired with a portable 
scanning FT-Raman spectrometer of their manufacture.  Spectra were acquired from 500 to 3500 
cm-1 with a resolution of 1 cm-1.   

 
GC-MS Analysis.  Samples for GC-MS analysis were prepared by diluting 2 µL of each 

sample with 2 mL dichloromethane.  An autosampler injected 1.0 µL aliquots of each of five 
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replicate samples in random order to an Agilent model 5890 capillary gas chromatograph coupled 
to a HP 5971 mass selective detector.  A split/splitless injector at 250oC with a split flow ratio of 
60:1 was used along with a 50 m x 0.2 mm Agilent HP-1 (dimethylpolysiloxane) capillary 
column.  The oven temperature profile was 50oC for one minute, to 290oC at 10oC/min, holding 
for seven minutes, giving a run time of 32 minutes. A solvent delay of four minutes was used 
which reduced the data acquisition time to 28 minutes per run.  Masses were scanned from m/z of 
40 to 240.  The GC-MS data that were acquired from these runs was converted from the native 
HP Chemstation data files to raw text format utilizing an in-house written MS Windows program. 
The chromatograms were then aligned to one another to minimize retention time variations from 
sample to sample via a standalone MS Windows program implementing the correlation optimized 
warping algorithm described by Vest Nielsen.  (available for download at  
http://www.biocentrum.dtu.dk/mycology/analysis/cow/) 

 
Chemometric Regression.  PLS and principal components regression (PCR) was performed 

utilizing the NIR spectra, Raman spectra, GC total ion current chromatograms, and unfolded GC-
MS chromatograms against the 28 measured fuel properties.  Both PLS and PCR are inverse least 
squares regression models that use factor analysis to reduce the spectral or chromatographic data 
prior to regression.33  PCR projects the input data onto a lower dimensional subspace calculated 
to most efficiently represent the sample-to- sample variation contained within the calibration data, 
whereas PLS projects the input data onto a lower dimensional subspace calculated to best 
represent the covariance between the calibration data and corresponding reference values.  These 
two regression techniques were chosen for consideration as they are well established, well 
characterized, and widely implemented in various software packages.  Additionally, multiway 
partial least squares regression was used to regress GC-MS datasets against the provided fuel 
properties for each of the 45 fuels in the sample set.   
 

NIR and Raman spectra were assembled into matrices in which each row was a spectrum of a 
different fuel sample.  The acquired dataset for GC-MS analysis consisted of a series of two-
dimensional GC-MS chromatograms, one for each sample analyzed, stacked on each other to 
form a three-dimensional array, or cube of data.  Total ion current (TIC) chromatograms were 
constructed by summing each GC-MS dataset along the m/z axis.  “Unfolded” GC-MS 
chromatograms were created by reshaping the data matrix for each GC-MS chromatogram into a 
single row vector.  Prior to unfolding, each GC-MS chromatogram was boxcar averaged with a 
window of five points.   

 
PLS and PCR algorithms were implemented utilizing the PLS Toolbox.  Calibration models 

were evaluated utilizing “leave-one-out” cross validation in which the property value of each 
sample is predicted utilizing a calibration model built from all of the other data.  Regression 
models were built utilizing from one to ten latent variables (or components) and the model with 
the lowest root mean square error of cross validation (RMSECV) was chosen for inclusion into 
the results.  A limit of 10 latent variables was imposed to guard against over-fitting the data with 
excessively complex models, and provided us with a maximum ratio of roughly five fuel samples 
per latent variable a regression model. For purposes of comparison between models of different 
properties, RMSECV values were normalized by the mean observed for the fuel property they 
were predicting. 
 
 
                                                 
33 Richard Kramer, “Chemometric Techniques for Quantitative Analysis,” Marcel Dekker, New 

York, 1998. 
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ASTM Property Name min max range mean std 
D4052     density at 60 ºF, g/ml           0.78 0.82 0.04 0.80 0.01 
D93       flash point (P-M), ºF 105.00 154.00 49.00 119.69 11.94 
D3828     flash point (mini), ºF  103.00 144.00 41.00 120.11 10.35 
D5972     freeze point, ºC           -72.00 -44.00 28.00 -52.31 5.62 
D5949     pour point, ºC             -80.00 -60.00 20.00 -69.20 2.84 
D2622     total sulfur, ppm      7.00 2453 24460 417.64 432.21 
D1840     naphthalenes, vol %        0.00 3.80 3.80 1.30 0.76 
D1319     aromatics, vol %           11.80 22.00 10.20 17.88 2.13 
D6379     aromatics, vol %           13.00 24.40 11.40 19.57 2.40 
D1319     saturates, vol %           75.80 87.00 11.20 80.50 2.13 
D1159 olefins, vol %             0.06 1.53 1.47 0.35 0.25 
D1319     olefins, vol %             0.70 2.30 1.60 1.62 0.35 
D3701     hydrogen, weight %        13.71 14.47 0.76 14.15 0.19 
D4809     net heat content, btu/lb  18331 18589 258 18506 52.08 
D445      viscosity 20 ºC, mm2/sec 1.30 3.00 1.70 1.78 0.30 
D445      viscosity -20 ºC, mm2/sec 2.70 6.20 3.50 4.18 0.81 
D445      viscosity -40 ºC, mm2/sec 4.80 14.60 9.80 8.59 2.38 
D1218     refractive index         1.44 1.46 0.02 1.45 0.00 
D2624     conductivity, pS/m 0.00 395.00 395.00 93.11 101.11 
D3242     acid number, mg KOH/g 0.0000 0.0200 0.0200 0.0055 0.0035 
D3241     thermal stability, ºF    265.00 370.00 105.00 286.89 16.90 
D5001     lubricity, mg/L        0.54 0.71 0.17 0.62 0.04 
D86       initial boiling point, ºF              294.10 362.80 68.70 318.17 15.83 
D86       10% distillation, ºF 329.10 388.60 59.50 347.66 15.79 
D86       20% distillation, ºF 335.20 400.00 64.80 358.81 16.52 
D86       50% distillation, ºF 346.40 439.00 92.60 391.34 20.45 
D86       90% distillation, ºF 372.40 488.30 115.90 454.68 22.65 
D86    final boiling point, ºF    386.80 521.70 134.90 481.01 25.00 
 

Table 5.  Summary of fuel property data ranges and standard deviations for each tested property. 
 

 
Six preprocessing strategies were examined for each dataset.  For spectroscopic data, these 

strategies were as follows:  1) no preprocessing, 2) second derivative, 3) autoscaling, 4) mean-
centering, 5) second derivative followed by autoscaling, and 6) second derivative followed by 
mean-centering.  Second derivative transformation was implemented through the Savitsky-Golay 
filter algorithm in the PLS Toolbox.  For chromatographic data, the preprocessing strategies 
tested were as follows:  1) no preprocessing, 2) normalization, 3) autoscaling, 4) mean-centering, 
5) normalization followed by autoscaling, and 6) normalization followed by mean-centering.  
Normalization was implemented by dividing each individual chromatogram by its Euclidean 
norm, and was implemented to minimize any injection volume variation from run to run.  Thus, 
for each preprocessing scheme, and each regression technique, an optimized regression model 
using up to 10 latent variables was calculated and the RMSECV of that model was recorded. 

 
Additionally, N-PLS was used to build regression models to predict fuel properties with 

entire GC-MS chromatograms.  GC-MS data was boxcar averaged along the retention time axis 
with a window of ten points and the mass spectral axis of the data was truncated to the first 100 
masses acquired (m/z of 40 to 139) in order to speed calculations. 
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Results and Discussion 
 

The fuel sample densities predicted from PLS regression of the Raman spectra are plotted 
against the measured values in Figure 21.  Reasonably good agreement was obtained as shown 
when the data were mean centered and regressed with ten latent variables.  The predicted vs 
aromatic contents of the fuel samples from PLS regression of NIR spectra are shown in Figures 
22 and 23, for measurements obtained by the HPLC method34, ASTM D6379, and the fluorescent 
indicator absorption (FIA) method35, ASTM D1319, respectively.  The PLS regressions were 
performed on the mean centered data, using seven latent variables.  As shown, good agreement 
was obtained between the predicted and measured values for aromatic content by HPLC and by 
the FIA method.  However, when the HPLC measurements are plotted against the corresponding 
FIA measurements in Figure 24, it is evident that the HPLC values were systematically higher.  
This illustrates the ability of PLS correlation modeling to derive reasonably accurate predictions 
from the same set of spectral data for two different measurements of a single property, even if the 
results of those two techniques are not in complete agreement with each other.  Clearly, both the 
HPLC and the FIA methods are self-consistent, but it is important to specify which ASTM 
method is being used, since the models derived in this manner are only representative of the data 
used in the training set.     

 
Assessment of prediction errors.  The error of prediction of a chemometric regression model 

is a function of the uncertainty in the original ASTM reference values as well as of the error 
associated with the analytical technique used to acquire spectroscopic or chromatographic data 
utilized for model building.  One would expect that the error in prediction of a good regression 
model would be comparable in magnitude to the uncertainty of the reference values used to 
construct it.  Accordingly, the chemometric regression models were first evaluated to see how 
their rates of error compared to the reproducibility and repeatability values of the respective 
ASTM methods that were used to acquire the reference measurements.  Reproducibility and 
repeatability values were calculated using the formulas published in the method specifications 
and the mean property values observed across the entire set of fuel samples.  These values are 
compiled in Table 6, along with the root mean errors of cross validation for the chemometric 
regression models constructed.  The property normalized RMSECV values that were 10% or less 
of the measured values for the PLS and PCR models are plotted, along with the published ASTM 
repeatability values normalized by the mean measured values for each property in Figure 25.  An 
examination of Table 6 shows that the PLS model RMSECV values do, in fact, tend to be roughly 
similar in magnitude to the ASTM method values, with a few notable exceptions.  The 
corresponding PCR model RMSECV values were similar.  Predictions made for sulfur content 
and conductivity exhibited much greater error than would be expected from the ASTM method 
uncertainty alone.  This is unsurprising, as none of the analytical techniques examined directly 
probe these fuel properties.  Also notable is the fact that both of the flash point measurement 
models exhibit significantly smaller error than the ASTM method uncertainty would imply.  The 
reasons for this are unclear, but could be the result of overfitting in the regression model, higher 

                                                 
34 ASTM. Standard Test Method for Determination of Aromatic Hydrocarbon Types in Aviation 

Fuels and Petroleum Distillates – High Performance Liquid Chromatography Method with 
Refractive Index Detection.  In Annual Book of ASTM Standards; ASTM: Philadelphia, PA, 
2002; Vol. 05.04, ASTM D6379-04. 

35 ASTM, Standard Test Method for Hydrocarbon Types in Liquid Petroleum Products by 
Fluorescent Indicator Adsorption.  In Annual Book of ASTM Standards; ASTM: Philadelphia, 
PA, 2002; Vol. 05.04, ASTM D1319-03. 
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than normal precision from the analytical lab that performed the measurements, or some 
combination of factors. 
 

Properties amenable to predictive modeling.  Table 7 contains RMSECV values for PLS and 
PCR model predictions and predictions, normalized to mean property value for the sake of 
comparison across different properties.  The worst performing models are those for olefins 
(ASTM D1319) naphthalenes, acid number, total sulfur, olefins (ASTM D1159/D27), and 
conductivity, all giving RMSECV values that were greater than 20% of the mean property values 
being predicted (Table 5).  A number of models, however, gave RMSECV values that were less 
than ten percent of the mean property value, indicating potential for inclusion into the proposed 
automated fuel assessment methodology.  Among these properties were those of interest in fuel 
quality assessment, shown in Table 1:  density, freeze point, pour point, flash point, aromatic 
content, and viscosity. 

 
PLS vs PCR modeling efficiencies.  From Table 7, one can see that there seems to be little 

difference between the results obtained from each regression method.  The ratios of PLS/PCR 
RMSECV values, shown in Table 8 clearly illustrate that PLS and PCR models perform with 
comparable accuracy, although when PLS models are better, they tend to be better by a slightly 
larger margin than that of PCR models that are better their corresponding PLS model.  As the 
number of latent variables required to adequately model a particular property increases, so does 
the complexity of the resultant model and its specificity for the particular fuels that constitute the 
training set.  As a consequence, models with high numbers of latent variables tend to fail when 
applied to fuels that are not similar to those used to develop that particular model.  Models 
developed with high numbers of latent variables are generally referred to as over-fitting the data.  
It is therefore desirable to construct models that adequately relate to the property of interest with 
as few latent variables as possible, trading off precision for robustness.  Table 9 lists the optimum 
number of latent variables required for each property model shown.  An examination of this Table 
shows that in general, the model that performed best for each property, also required the most 
latent variables, and thus the greatest model complexity, regardless of regression method.  It is 
apparent, however, that PCR models requiring high numbers of latent variables return slightly 
less improvement in terms of RMSECV versus cases where PLS models require high numbers of 
latent variables.  For example, the PCR model for flash point (D93) requires six extra latent 
variables to obtain an RMSECV that is 4% lower than the 3 latent variable PLS model.  
Conversely, the PLS model for pour point requires only 3 extra latent variables to obtain an 
RMSECV that is 7% lower than the seven latent variable PCR model. 

 
Comparison of analytical techniques.  Next to be considered is the question of which 

analytical technique provides the best data for chemometric prediction of fuel properties.  Table 
10 lists the optimum RMSECV for each of the three analytical techniques examined.  RMSECV 
values obtained from calibrations using GC or spectroscopic data were essentially comparable, 
except in the prediction of saturate content, aromatic content, and freeze point, where NIR 
performed substantially better.  In fact, from Table 10 it can be seen that calibrations constructed 
with NIR or Raman data generally performed slightly better than, or comparably to those 
constructed with GC data, with exceptions for freezing point, distillation temperatures, and 
viscosity where calibrations using GC data performed slightly better. 
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Figure 21.  Density of the jet fuel sample set predicted by PLS regression of Raman spectra using 
ten latent variables, versus density measured by ASTM D4052 
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Figure 22.  Jet fuel sample aromatic content predicted by PLS regression of NIR spectra using 
seven latent variables, versus aromatic content measured by ASTM D6379 (HPLC method). 
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Figure 23.  Jet fuel sample aromatic content predicted by PLS regression of NIR spectra using 
seven latent variables, versus aromatic content measured by ASTM D1319 (FIA method).   
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Figure 24.  Aromatic content in the jet fuel sample set, measured by ASTM D6379 vs. ASTM 
D1319. 
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Regressing fuel properties against unfolded GC-MS data led to some slight improvements in 

prediction of freeze point and pour point, but otherwise performed somewhere in between 
regression models utilizing total ion current chromatograms and those using NIR spectra.  N-PLS 
regression models utilizing averaged GC-MS data sets performed in a comparable fashion or 
worse than other regression models.  In this study, no advantage was seen in utilizing N-PLS 
regression over standard PLS on unfolded data, especially in models with the lowest RMSECV 
values, such as density and refractive index, where N-PLS gave RMSECV values 5 and 16 times 
greater than those constructed with unfolded GC-MS data. 

 
Data preprocessing methods.  The effects of the preprocessing algorithms considered in this 

study were inconsistent from property to property, decreasing the RMSECV in many cases but 
raising it in others.  For example, mean centering lowered RMSECV values in PLS calibrations 
for flash point, lubricity, and viscosity at -40 ºC while slightly raising RMSECV in PLS 
calibrations for saturate and aromatic content.  It is likely that this variability may be reduced 
when a larger training set of fuels is considered.  In general, however, results from mean 
centering provided either the best RMSECV, or an RMSECV that was not more than 10% greater 
than the processing scheme that did.  In all cases, applying a second derivative transformation to 
the spectroscopic data resulted in a significant increase in RMSECV.  Autoscaling provided 
results that were comparable or slightly worse than mean centering in all but a few cases. 
 

Summary of Results 
 
Feasibility of chemometric prediction of a number of critical fuel properties from measured 
capillary gas chromatograms, NIR spectra, and Raman spectra has been demonstrated.  Root 
mean errors of cross validation of predicative models for critical properties of interest were less 
than 10% of observed mean property values, and commensurate with uncertainties expected from 
the ASTM methods utilized to acquire reference values for this study.  The findings of this study 
do not indicate that there were any statistically significant differences between NIR and Raman  
spectroscopy in terms of regression model performance.  Thus, a system based solely on either 
NIR or Raman spectral data should perform equally well, although a system based on both GC 
and spectral instruments could provide some improvement, particularly in the prediction of freeze 
point and viscosity.   

 
Predictions based on unfolded GC-MS chromatograms and N-PLS regression of whole GC-

MS chromatograms failed to yield significant improvement over predictions based on calibration 
models utilizing total ion current chromatograms, or capillary gas chromatography.  A sensor-
based fuel quality assessment system could in theory be augmented with specialized sensors to 
allow evaluation of properties that are not amenable to chemometric prediction from 
chromatography or spectroscopy alone, such as conductivity, total sulfur, and acid number.  
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ASTM Method 
Errors PLS Minimum RMSECV 

ASTM Property Reprod. Repeat. NIR Raman GC 
D4052     Density         0.0005 0.0001 0.0026 0.0018 0.0031 
D93       Flash Pt. (PM) 32.0 33.3 8.8 8.9 7.1 
D3828     Flash Pt. (mini) 37.0 33.3 7.8 7.5 7.4 
D5972     Freeze Pt.          1.3 0.7 3.6 4.2 3.0 
D5949     Pour Pt.            6.8 3.4 2.7 2.2 2.1 
D2622     Sulfur   30 21 283 233 419 
D1840     Naphthalenes       0.069 0.051 0.47 0.41 0.55 
D1319     Arom., FIA        2.70 1.30 0.66 0.92 1.32 
D6379     Arom., HPLC        1.897 0.938 0.64 1.09 1.48 
D1319     Saturates         4.40 1.40 0.75 1.20 1.37 
D1159 Olefins         0.40 0.20 0.21 0.34 0.22 
D1319     Olefins, FIA          2.10 0.60 0.34 0.48 0.31 
D3701     Hydrogen   0.11 0.09 0.11 0.20 0.12 
D4809     Heat Content 77.4 22.9 27.0 48.0 40.4 
D445      Visc. 20ºC - - 0.25 0.30 0.24 
D445      Visc.-20ºC - - 0.47 0.47 0.39 
D445      Visc.-40ºC - - 1.16 1.00 0.86 
D1218     Ref. Index         0.0005 0.0002 0.0012 0.0019 0.0013 
D2624     Conductivity 17 5 77 92 87 
D3242     TAN 0.0030 0.0010 0.0034 0.0030 0.0034 
D3241     Thermal Stab.  - - 46 58 47 
D5001     Lubricity      0.070 0.046 0.037 0.038 0.033 
D86       IBP                15.3 6.3 11.0 11.4 9.6 
D86       10% 10.8 5.1 9.2 7.8 5.7 
D86       20% 13.9 5.3 8.5 6.9 5.1 
D86       50% 24.2 9.0 8.9 15.2 10.5 
D86       90% 11.6 5.4 14.0 13.3 10.9 
 
Table 6.  Comparison of Regression model root mean error of cross-validation (RMSECV) 
calculated from mean observed value for each property over all samples, with the published 
ASTM method reproducibility and repeatability.   
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Figure 25.  RMSECV values for PLS and PCR models, compared to the corresponding ASTM 
method repeatability for each property, normalized by the mean property values measured for this 
fuel dataset.  
 
 

5.0  CONCLUSIONS 

5.1  Chemometric Analysis of Chromatographic Data 
 

The findings of this study have shown that chemometric analysis can be successfully 
employed to establish a relationship between the composition of a particular fuel to its suitability 
for use.  With proper preprocessing, the tendency of jet fuels from one particular refinery to cause 
catastrophic engine failures through excessive coking, were successfully classified on the basis of 
data obtained through gas chromatography with flame ionization detection.  Although this 
approach proved successful in the scenario examined, it is likely that the accuracy of a 
classification model developed for one set of fuels will suffer when applied to a new set of fuels 
obtained some time later.  This is due to normal variations in fuel feed stocks and refinery 
operating parameters that are difficult to model explicitly.  Thus, in addition to proper instrument 
maintenance and data pretreatment, classification model maintenance and calibration against 
updated fuel sample sets are required to maintain high accuracy of such a classifier.   
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Property 
RMSECV 

PLS 
RMSECV 

PCR 
Refractive index 0.00085 0.000941 
Sp. heat cap. at 0 ºC 0.00146 0.00172 
Density at 60 ºF 0.00219 0.00327 
Hydrogen 0.00765 0.00735 
Saturates 0.00929 0.0103 
Dist 10% 0.0164 0.0174 
Dist 50% 0.0226 0.0244 
Dist FBP 0.0291 0.0289 
Pour Point 0.0297 0.0321 
Dist IBP 0.0302 0.0304 
Aromatics, D6379 0.0329 0.0357 
Aromatics, D1319 0.0366 0.0429 
Lubricity scar 0.0540 0.0624 
Freezing point 0.0570 0.0559 
Flash point, D93 0.0597 0.0575 
Flash point, D3828 0.0615 0.0601 
Viscosity at -20 ºC 0.0920 0.0916 
Viscosity at -40 ºC 0.0995 0.0996 
Viscosity at  20 ºC 0.136 0.134 
Thermal stability 0.165 0.163 
Olefins, D1319 0.194 0.192 
Naphthalenes 0.319 0.329 
Total sulfur 0.537 0.653 
Acid number 0.545 0.545 
Olefins, D1159/D27 0.605 0.576 
Conductivity 0.840 0.909 

 

Table 7.  Summary of PLS and PCR calibration results.  The lowest observed RMSECV for each 
property (normalized to mean property value) is displayed and these results are sorted from 
lowest to highest of the PCR results. 
 
 

A potential route to address this issue is through the use of higher-order analytical  
instrumentation and multi-way chemometric algorithms.27-32  These techniques, in principal, 
allow for the deconvolution of independently varying components from sample to sample, 
regardless of the presence of unknown interfering chemical species, thus vastly increasing the 
selectivity and power of the entire analytical method.  It has been shown that expanding fuel 
analysis to a three dimensional analytical technique such as gas chromatography with mass 
spectrometry detection, reduced model dependence on fuel source by allowing the elucidation of 
trace level changes in fuel composition down to the individual compound level.  This type of 
analyses could provide a means to characterize compositional changes in fuels associated with 
degradation to an unprecedented level of detail.   



44 

 
 

Property Ratio Property Ratio 
Density at 60 ºF 0.67   Viscosity at  20 ºC 1.01 
Flash point D93 1.04   Viscosity at -20 ºC 1.00 
Flash point D3828 1.02   Viscosity at -40 ºC 1.00 
Freezing point 1.02   Refractive index 0.91 
Pour point 0.93   Conductivity 0.92 
Total sulfur 0.82   Acid number 1.00 
Naphthalenes 0.97   Thermal stability 1.01 
Aromatics, D1319 0.85   Lubricity scar 0.87 
Aromatics, D6379 0.92   Dist IBP 0.99 
Saturates 0.90   Dist 10% 0.94 
Olefins, D1159/D27 1.05   Dist 20% 0.97 
Olefins, D1319 1.01   Dist 50% 0.93 
Hydrogen content 1.04   Dist 90% 1.05 
Sp. heat cap. at 0 ºC 0.85   DIST FBP 1.01 

 

Table 8.  Comparison of PLS versus PCR model performance.  Listed are the ratios of lowest 
PLS model RMSECV to lowest PCR model RMSECV for each fuel property 
 
 
 
 
 

roperty PLS PCR Property PLS PCR 
Density at 60 ºF 10 10    Viscosity at  20 ºC 2 6 
Flash point D93 3 9    Viscosity at -20 ºC 1 1 
Flash point D3828 4 9    Viscosity at -40 ºC 3 7 
Freezing point 5 10    Refractive index 7 8 
Pour point 10 7    Conductivity 3 4 
Total sulfur 10 2    Acid number 1 1 
Naphthalenes 8 5    Thermal stability 1 1 
Aromatics, D1319 8 8    Lubricity scar 8 5 
Aromatics, D6379 10 9    Dist IBP 3 7 
Saturates 8 8    Dist 10% 4 9 
Olefins, D1159/D27 6 7    Dist 20% 4 9 
Olefins, D1319 1 3    Dist 50% 5 9 
Hydrogen 7 8    Dist 90% 3 9 
Sp. heat cap. at 0 ºC 6 4    DIST FBP 10 9 

 
Table 9.  Number of latent variables utilized in best PLS and PCR models. 
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Property ASTM Spec. GC NIR Raman 

Refractive index D1218 0.0009 0.0009 0.0013 
Density at 60 ºF D4052 0.0038 0.0032 0.0022 

Flash point  D93 0.0597 0.0734 0.0747 
Flash point  D3828 0.0615 0.0652 0.0627 
Freeze point D5972 0.0570 0.0699 0.0810 
Pour point D5949 0.0298 0.0394 0.0322 

Naphthalenes D1840 0.4321 0.3700 0.3191 
Aromatics D1319 0.0739 0.0367 0.0513 
Aromatics D6379 0.0759 0.0329 0.0559 
Saturates D1319 0.0170 0.0093 0.0149 
Olefins D1159/D27 0.6148 0.6051 0.9586 
Olefins D1319 0.1947 0.2116 0.2980 

Lubricity, Bocle D5001 0.0540 0.0607 0.0618 
Viscosity at  20 ºC D445 0.1364 0.1424 0.1682 
Viscosity at -20 ºC D445 0.0920 0.1131 0.1114 
Viscosity at -40 ºC D445 0.0996 0.1349 0.1158 

Acid number D3242 0.6173 0.6135 0.5459 
Thermal stability D3241 0.1655 0.1652 0.2064 
Mercaptan sulfur D3227 0.9679 0.6527 0.5378 

Sp. heat cap. at 0 ºC E1269 0.0597 0.0734 0.0747 
Conductivity D2624 0.972 0.8408 1.0748 
Acid number D3242 0.6173 0.6135 0.5459 

Distillation   IBP D86 0.0303 0.0345 0.0357 
Distillation  10% D86 0.0164 0.0265 0.0225 
Distillation  50% D86 0.0268 0.0227 0.0386 
Distillation  FBP D86 0.0303 0.0349 0.0292 

 

Table 10. Comparison of model performance according to analytical method used.  Lowest 
RMSECV values for each property (normalized to mean property value) are listed in bold type. 
 

 
It has also been shown that a key to successful chemometric analysis of complex 

chromatographic fuel data is the implementation of an ANOVA calculation performed at every 
time-resolved data point.  This serves as a powerful feature selection utility to locate and extract 
chemically relevant data from much larger and complex GC-MS datasets.  This extracted subset 
of relevant information was referred to in this paper as the feature selected data.  PARAFAC 
analysis (a multi-way factor analysis algorithm) of the GC-MS data cube, after ANOVA feature 
selection, was shown, in principal, to be a successful route to elucidating chemical changes down 
to the individual compound level.  This capability provides for a wide set of opportunities for 
significant improvements in fuel diagnostics and analysis.  For example, by comparing GC-MS 
datasets from a fuel before and after thermal stress in this manner, it would be possible to obtain 
structural information on only those molecular species that changed in response to thermal stress.  
In principal, this will provide an excellent starting place to begin to characterize and/or validate 
likely mechanisms of fuel degradation.  By coupling the chemometric algorithm’s output to an 
electronic NIST mass spectrum database, it is possible to automatically generate a list of 
compounds that have either increased or decreased in concentration in response to a given 
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stimulus.  The utility of this approach was demonstrated with two experiments, where 
compositional changes were detected in Naval distillate fuel during mild thermal stress, and how 
the evaporative losses were detected in vented bottle testing.   

 
Chemometric analysis of a Naval distillate fuel subjected to thermal stress in the presence of 

catalytic copper, in a closed system, was shown to result in the same overall chemical 
composition as the same fuel stressed without copper.  This indicated that in this instance, that 
while copper accelerated the autoxidation of the fuel, the reaction mechanisms to produce the 
final composition were similar as in the neat fuel.  
 

Comparison of the GC-MS of an adulterated or blended fuel with that from the unadulterated 
fuel, can also provide an extremely sensitive identification of compounds in the adulterant or co-
blended fuel.  The feature selected chromatogram of the fuel adulterant can then be input to the 
appropriate PCA model to reveal the likely type of fuel that has been commingled with the 
original sample.  This also can be used to selectively identify fuel adulterants that may have been 
added to the fuel either purposely or by accident, before acceptance for use.  This was 
demonstrated in this study in the discrimination and quantification of trace levels of home heating 
oil, in a compositionally similar diesel fuel matrix.  

 

5.2  Development of A Sensor-Based Fuel Quality Assessment Capability 
 

A sensor-based fuel quality technology is based on relating a numerical representation of fuel 
composition, to the properties of interest.  There are two major aspects to this approach; the type 
of sensor and its response to compositional features, and the chemometric models that predict the 
properties from the sensor data.  In this study, we have demonstrated the feasibility of predicting 
of a number of critical fuel properties from compositional data.  Reasonable property predictions 
were obtained from a small (46 sample) training set from capillary gas chromatography, NIR and 
Raman spectroscopy.  The advantages of optical sensors over chromatographic devices for field 
use were discussed above, and thus the majority of this facet of the study was focused on 
spectroscopy.   

 
In assessing the accuracy of the chemometric models to predict a particular fuel property, the 

most obvious way is to directly compare the predicted and measured values.  However, the 
development of a global parametric measurement of error is complicated by the fact that the 
standard test methods to which the chemometric predictions are being compared to, also contain 
error.  A common way to express the errors of prediction by a chemometric model is to compute 
the root mean square error of prediction (RMSEP) of a prediction subset of available data 
utilizing a model constructed from a separate “calibration” subset of data.33  In this preliminary 
work, however, the training set consisted of only 46 jet fuel samples, necessitating model 
evaluation through “leave-one-out” cross validation, in which the prediction of a given sample is 
made utilizing a model generated from the remaining samples.  Thus, when comparing predicted 
vs measured values for a property of interest, the root mean square error of cross-validation was 
used instead of the RMSEP.  For the purpose of comparing the errors of prediction across the 
various fuel property models, the RMSECV values were normalized to the mean of the predicted 
values.   

 
The results of this initial study were successful in producing models with RMSECV values 

for the critical fuel properties, i.e., flash point, density, freeze point, aromatics, and viscosity, that 
were less than 10% of observed mean property values within the training set used, and 
commensurate with uncertainties expected from the ASTM methods utilized to acquire reference 
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values for this study.   This indicates that chemometric prediction of fuel properties from 
compositional data is feasible, although much more work must be done to validate the robustness 
of this approach as well as to develop rigorous implementation guidelines and requirements. 

 
Comparison of GC, NIR and Raman spectroscopy indicates that a fuel quality sensor 

platform based on either NIR or Raman spectral data should perform acceptably, although GC 
could provide some improvement, particularly in the prediction of freeze point and viscosity.  The 
prediction of fuel system icing inhibitor (FSII) remains to be predicted adequately by 
spectroscopy without any type of sample preparation.  It appears that the structural features of the 
FSII additive (di-ethyleneglycol monomethyl ether) that are detectable by spectroscopy may not 
be sufficiently distinct from other fuel constituents to model chemometrically in fuel.  Future 
studies will be directed towards the exploration of specialized mathematical treatments and 
potentially, alternate analytical methodologies to accomplish this. For example, a specialized 
chromatographic method, either alone or in combination with spectroscopy, may offer a pathway 
towards the successful direct measurement of FSII in jet fuel.  
 

Taking this pathway a bit further, it is expected that data fusion techniques in which several 
types of analytical data can be combined in a single predictive model have the potential to offer 
distinct advantages over each measurement technique alone, in a manner analogous to the 
advantages offered by multivariate instrumentation (e.g. spectroscopy) over univarate 
instrumentation (e.g. single-point sensors).  Thus, a model that combines both chromatography 
and spectroscopic data may be capable of accurately measuring FSII content, along with multiple 
other properties that are not currently amenable to chemometric modeling from spectroscopy 
alone.  Taking this approach, the measurement of a broad range of fuel properties, including those 
that are not amenable to chemometric prediction from GC or NIR data, such as conductivity, total 
sulfur, and acid number, would in theory, be attainable with a NIR-based fuel quality assessment 
system that is augmented with a set of carefully chosen specialized sensors. 

 
To achieve reliable, robust prediction of these properties in practice, a calibration set of fuels 

must be assembled that accurately reflects the span of levels at which each of these components is 
present in the range and type of fuels that are to be evaluated.  Current work in this area is being 
undertaken to broaden the scope of the fuel training set.  It is also a goal of this program to 
produce a stand-alone software implementation of these chemometric models, which would 
provide the means to export this to other fuel laboratories for use.  The software would be 
constructed to so as to allow the user to update the models as new data are obtained. 

 
A major caveat to these conclusions, however, lies in the limited nature of this feasibility 

study.  Most of the fuel properties examined arise from complex interactions between many 
different fuel constituents.  To achieve reliable, robust prediction of these properties in practice, a 
calibration set of fuels must be assembled that accurately reflects the span of levels at which each 
of these components is present in the range and type of fuels that are to be evaluated.  Naturally, 
this leads to a requirement of hundreds, if not thousands of calibration samples to achieve 
predictions of high accuracy and precision, as well as to an implicit requirement that the 
instrumentation used to obtain the calibration data is of high reliability and precision.  This 
phenomenon has been observed in work done by others in the prediction of octane number of 
gasoline via chemometric regression on NIR spectra.  Thus, further work involving wider sample 
sets and increased replicates is required to fully ascertain the limitations of this method. 
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